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a b s t r a c t

In this article, we present a finite element variational multiscale (VMS) method for incom-
pressible flows based on two local Gauss integrations, and compare it with common VMS
method which is defined by a low order finite element space Lh on the same grid as Xh for
the velocity deformation tensor and a stabilization parameter a. The best algorithmic fea-
ture of our method is using two local Gauss integrations to replace projection operator. We
theoretically discuss the relationship between our method and common VMS method for
the Taylor–Hood elements, and show that the nonlinear system derived from our method
by finite element discretization is much smaller than that of common VMS method com-
putationally.

Additionally we present numerical simulations to demonstrate the effectiveness, storage,
computational complexity of our method. Finally, we give some numerical simulations of
the nonlinear flow problems to show good stability and accuracy properties of the method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The incompressible Navier–Stokes equations model Newtonian fluids, such as air flow at low speed and water flow, and
finite element methods for their simulations have been one class of the most successful methods [1–3]. However, there still
remain some important but challenging problems. For example, the discretization of the Navier–Stokes equations by finite
element methods may generally bring out two shortcomings: the violation of the discrete inf-sup condition and spurious
oscillations due to the domination of convection term. There are huge literature on finite element methods for Navier–Stokes
equations. Among them, we list some methods as follows: recently developed stabilized methods, such as, Galerkin least
square(GLS) method introduced in [4–6] by Franca, Hughes, and their collaborators; classical large eddy simulation (LES) ap-
proach in [7,8] which treats the large scales as an average in space given by convolution with an appropriate filter function;
two-level stabilization scheme in [9]; variational multiscale (VMS) method which defines the large scales in a different way,
namely by a projection into appropriate subspaces, see Guermond [10], Hughes et al. [11–13] and Layton [14], and other lit-
eratures on VMS methods [15–24]; residual-free bubbles(RFB) method [25–27]; three-level method [28] and local projection
stabilization [29]; etc.
. All rights reserved.
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In common VMS methods, the large scales are defined by projections into appropriate function spaces. There is a class of
VMS methods based on a three-scale decomposition of the flow field into large, resolved small and unresolved scales [30].
The two local Gauss integrations method was first developed to offset the discrete pressure space by the residual of the sim-
ple and symmetry term at element level in order to circumvent the inf-sup condition (see e.g., [31,32]). This paper focuses on
a finite element VMS method for incompressible flows based on two local Gauss integrations. It also can be cast in the frame-
work of VMS method which is defined by a low order finite element space Lh on the same grid as Xh for the velocity defor-
mation tensor. This method avoids constructing the projection operator, and keeps the same efficiency, does not add extra
storage compared with common VMS method which introduces additional dependent variables.

The organization of this paper is as follows. In Section 2 we introduce the governing equations, the notations and some
well-known results used throughout this paper. A finite element VMS method based on two local Gauss integrations is for-
mulated in Section 3. In next section we discuss the relation between common VMS method and our method with respect to
their implementation. Then in Section 5, numerical simulations of the nonlinear steady flow problems are shown to verify
the good stability and accuracy properties of our method. Finally, we end with a short conclusion in Section 6.

2. Governing equations

Incompressible flows are modeled by the following Navier–Stokes equations:
Table 4
Informa

1=h

4
8

16
32
� mDuþ ðu � rÞuþrp ¼ f in X;

r � u ¼ 0 in X; ð2:1Þ
u ¼ 0 on @X;
where X represents a polyhedral domain in Rd; d ¼ 2;3; with boundary @X;u the fluid velocity, p the pressure, f the pre-
scribed body force, and m > 0 the kinematic viscosity. Given a characteristic length scale L and velocity scale U, the Reynolds
number is defined by Re ¼ UL=m.

The classical weak formulation of (2.1) reads: find ðu; pÞ 2 ðX;QÞ satisfying
maðu; vÞ þ bðu; u;vÞ � dðp;vÞ ¼ ðf ;vÞ 8 v 2 X;

dðq;uÞ ¼ 0 8 q 2 Q :
ð2:2Þ
Here, we used notations
X ¼ H1
0ðXÞ

d
; Y ¼ L2ðXÞd; Q ¼ L2

0ðXÞ ¼ q 2 L2ðXÞ;
Z

X
pdx ¼ 0

� �
;

aðu;vÞ ¼ ðru;rvÞ; dðp;vÞ ¼ ðr � v; pÞ; bðu; v;wÞ ¼ ððu � rÞv ;wÞ;
and ð�; �Þ is the inner product in L2ðXÞ or L2ðXÞd�d. The norm in L2ðXÞd and norm in the standard Sobolev space HkðXÞd are
denoted by k � k0 and k � kk, respectively. The space X is equipped with the norm fðr�;r�Þg1=2 or k � k1, and Q is equipped with
the usual L2 norm.

For the finite element discretization, let sh be the regular triangulations of the domain X, and define the mesh parameter
h ¼max

Xe2sh

fdiamðXeÞg. We choose the conforming velocity-pressure finite element space ðXh;QhÞ � ðX;QÞ satisfying the dis-

crete inf-sup condition
inf
qh2Qh

sup
vh2Xh

ðqh;r � vhÞ
kqhk0krvhk0

P b > 0; ð2:3Þ
where b is independent of h. Here we consider the Taylor–Hood elements [2]:
Xh ¼ fuh 2 CðXÞdjuhjXe
2 P2ðXeÞd 8Xe 2 shg;

Q h ¼ fqh 2 CðXÞjqhjXe
2 P1ðXeÞ 8Xe 2 shg;
where PkðXeÞ; k ¼ 1;2 is the space of kthorder polynomials on Xe. We will also need the piecewise constant space
R0 ¼ fvh 2 L2ðXÞjvhjXe
2 P0ðXeÞ 8Xe 2 shg;
where P0ðXeÞ is the space of all constant polynomial on Xe.
.1
tion on the grids and the numbers of degrees of freedom in two dimensions.

cells Xh Mh Lh Gðuh;vhÞ

32 384 96 128 0
128 1536 384 512 0
512 6144 1536 2048 0

2048 24576 6144 8192 0
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Fig. 5.1. Convergence analysis for the velocity and the pressure using different methods. left: L2 error for the velocity; middle: H1 error for the velocity;
right: L2 error for the pressure.

Table 5.1
Rates of convergence using common VMS method with Re ¼ 10000 and a ¼ 0:1 h2.

h ku�uhkL2

kukL2

Order ku�uhkH1

kukH1

Order kp�phkL2

kpkL2

Order Iterations CPU(s)

1/8 0.1221 / 0.3063 / 0.01562 / 66 10.957
1/16 0.01920 2.6684 0.1127 1.4422 0.003906 2.0000 37 23.943
1/24 0.005530 3.0701 0.05401 1.8150 0.001736 2.0001 24 35.954
1/32 0.002193 3.2161 0.02955 2.0968 0.0009766 1.9999 21 57.456

Table 5.2
Rates of convergence using our stabilization method with Re ¼ 10000 and a ¼ 0:1 h2.

h ku�uhkL2

kuk
L2

order ku�uhkH1

kuk
H1

order kp�phkL2

kpk
L2

order Iterations CPU(s)

1/8 0.1221 / 0.3063 / 0.01562 / 66 5.939
1/16 0.01920 2.6684 0.1127 1.4422 0.003906 2.0000 37 13.419
1/24 0.005530 3.0701 0.05401 1.8150 0.001736 2.0001 24 20.593
1/32 0.002193 3.2161 0.02955 2.0968 0.0009766 1.9999 21 32.063
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Fig. 5.2. vertical midlines for Re ¼ 1000, h = 1/24.
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3. A finite element variational multiscale method based on two local Gauss integrations

As mentioned in the introduction, a Galerkin finite element discretization of (2.2) is unstable in the case of higher Rey-
nolds number (or smaller viscosity). Therefore, stabilization becomes necessary. We firstly consider a common version of
VMS methods which was proposed in [14] for the steady case. We define two spaces L ¼ L2ðXÞd�d and Lh ¼ R0ðXÞd�d, the latter
is defined on the same grid as Xh for the velocity deformation tensor. The common VMS method we consider hereafer is: find
ðuh; phÞ 2 ðXh;Q hÞ and gh 2 Lh satisfying
ðmþ aÞaðuh; vhÞ � aðgh;rvhÞ þ bðuh;uh;vhÞ � dðph; vhÞ ¼ ðf ;vhÞ 8vh 2 Xh;

dðqh;uhÞ ¼ 0 8qh 2 Q h;

ðgh �ruh; lhÞ ¼ 0 8lh 2 Lh:

ð3:1Þ
This system is determined by the choices of Lh and a. The stabilization parameter a in this scheme acts only on the small
scales. There is also another version of VMS methods which is based on two-grid stabilization such as schemes in [15,19],
and will not be discussed in this paper.
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Fig. 5.3. Horizontal midlines for Re ¼ 1000, h = 1/24.
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Fig. 5.4. vertical midlines for Re ¼ 3200, h = 1/32.
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Although this method (3.1) is shown to preserve stability and efficiency, the extra storage might be significant since it
introduces four additional dependent variables in gh. This situation will be more serious for three dimensional case. In
[2,14] the authors exploit an equivalent form of the viscous term for div-free functions to reduce this extra storage. In
the following, we will give another more efficient method to reduce this extra storage without introducing any additional
variables. It is easy to verify that the last equation in (3.1) implies that gh is the L2 projection of ruh onto Lh. Now we define
the orthogonal projection operator P : L! Lh with the following properties:
ðI �PÞl; ghð Þ ¼ 0 8l 2 L; gh 2 Lh; ðH1Þ
kPlk0 6 Cklk0 8l 2 L; ðH2Þ
kðI �PÞlk0 6 Chklk1 8l 2 L \ H1ðXÞd�d

: ðH3Þ
Then (3.1) can be rewritten as
maðuh; vhÞ þ aððI �PÞruh; ðI �PÞrvhÞ þ bðuh; uh;vhÞ � dðph;vhÞ ¼ ðf ; vhÞ 8vh 2 Xh;

dðqh; uhÞ ¼ 0 8qh 2 Qh:
ð3:2Þ
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Fig. 5.5. Horizontal midlines for Re ¼ 3200, h = 1/32.
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To deal with the stabilized term aððI �PÞruh; ðI �PÞrvhÞ in (3.2), we supply the local stabilization form of the difference
between a consistent and an under-integrated mass matrices based on two local Gauss integrations at element level as
follows:
Gðuh; vhÞ ¼ aðakðuh; vhÞ � a1ðuh; vhÞÞ: ð3:3Þ
Here
akðuh;vhÞ ¼ uT
GMkvG; a1ðuh;vhÞ ¼ uT

GM1vG;

uT
G ¼ ½u1; u2; � � � ;uN �T ; vG ¼ ½v1;v2; � � � ; vN �;

Mij ¼ ðr/i;r/jÞ; uh ¼ RN
i¼1ui/i;ui ¼ uhðxiÞ 8uh 2 Xh; i ¼ 1;2; � � � ;N;

Mk ¼ ðMk
ijÞN�N; M1 ¼ ðM1

ijÞN�N
and /i is the basis function of the velocity on the domain X such that its value is one at node xi and zero at other nodes; and N
is the dimension of Xh; the symmetric and positive matrices Mk

ij; k P 2 and M1
ij are the stiffness matrices computed by using
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Fig. 5.8. Vertical midlines for Re ¼ 10; 000, h = 1/64.
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Fig. 5.7. Horizontal midlines for Re ¼ 5000, h = 1/48.



H. Zheng et al. / Journal of Computational Physics 228 (2009) 5961–5977 5967
k-order and 1-order Gauss integrations at element level, respectively; ui and v i; i ¼ 0;1; � � � ;N are the values of uh and vh at
the node xi.

In detail, the stabilized term can be rewritten as
Table 5
CPU tim

Re
h

Commo
Our me
Save
Gðuh;vhÞ ¼ a
X

Xe2sh

Z
Xe ;k
ruhrvhdx�

Z
Xe ;1
ruhrvhdx

� �
8uh;vh 2 Xh;
where
R

Xe ;i
gðxÞdx denotes an appropriate Gauss integral over Xe which is exact for polynomials of degree i; i ¼ 1; k. For all test

functions vh 2 Xh;ruh must be piecewise constant when i ¼ 1.
Therefore, we give a stabilization method based on two local Gauss integrations as follows: find ðuh; phÞ 2 ðXh;Q hÞ such

that
maðuh; vhÞ þ bðuh;uh;vhÞ � dðph; vhÞ þ Gðuh;vhÞ ¼ ðf ;vhÞ 8vh 2 Xh;

dðqh; uhÞ ¼ 0 8qh 2 Q h:
ð3:4Þ
Remark 1. Our method based on two local Gauss integrations is only suitable for the Galerkin method using the Taylor–
Hood spaces. Throughout the paper, our analysis and numerical tests are all carried out for this case.

Remark 2. Although we don’t discuss the choice of a here, to our knowledge, for higher Reynolds number, the constant a
should be chosen as the scale of OðhÞ in order to stabilize the convective term appropriately. But, in order to keep the rates
of convergence with the Galerkin method using the Taylor–Hood elements, we set a ¼ Oðh2Þ, and a may depend on Re. While
computing the benchmark problem, we choose a ¼ OðhÞ for simplicity, because we just need to show the stability and
efficiency.
4. Relationship between common VMS method and our method

In this section, we will compare our method (3.4) with the common VMS method (3.1).
Firstly, we will discuss the equivalence between these two methods.
.3
e(s) for the two methods.

1000 3200 5000 10,000
1/24 1/32 1/48 1/64

n VMS 64.87 271.29 1078.05 4940.34
thod 28.41 114.32 368.37 799.31

56.2% 57.9% 65.8% 83.8%
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Fig. 5.9. Horizontal midlines for Re ¼ 10; 000, h = 1/64.
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To prove the equivalence between our method (3.4) and the common VMS method (3.1), we only need to show
Gðuh;vhÞ ¼ aððI �PÞruh; ðI �PÞrvhÞ. Due to the orthogonality of projection operator P, it suffices to prove that at each
element
Z

Xe ;1
ruhrvhdx ¼ ðPruh;PrvhÞXe

:

Assume that qi; i ¼ 1;2;3 are the three vertices of Xe. For uh;vh 2 Xh, we have ruh;rvh 2 P1ðXÞd�d. Then we obtain
Z
Xe ;1
ruhrvhdx ¼

Z
Xe ;k
ruh

q1 þ q2 þ q3

3

� �
rvh

q1 þ q2 þ q3

3

� �
dx

¼
Z

Xe ;k

ruhðq1Þ þ ruhðq2Þ þ ruhðq3Þ
3

rvhðq1Þ þ rvhðq2Þ þ rvhðq3Þ
3

dx

¼
Z

Xe ;k
PruhPrvhdx ¼ ðPruh;PrvhÞXe

: ð4:1Þ
The equivalence is true.
Now, we will discuss the difference between the two methods in the aspect of implementation.
Since we use the Taylor–Hood spaces ðXh;QhÞ, we define Lh on the same grid as ðXh;Q hÞ using piecewise constant poly-

nomials. We will describe the implementation in two dimension. The modifications in three dimensions are obvious.
Let’s begin with common VMS method (3.1). Let the velocity vector uh and the symmetric tensor Gh be given by
uh ¼
u1

h

u2
h

 !
; Gh ¼

g11
h g12

h

g21
h g22

h

 !
IsoValue
-1
-0.1
-0.01
-0.001
-0.0001
-1e-05
-1e-06
-1e-07
-1e-08
-1e-09
0.01
0.001
0.0001
1e-05
1e-06
1e-07
1e-08
1e-09
1e-10
1e-11
0.02
0.03
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0.05
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0.07
0.08
0.09
0.1
0.11

u streamline

Fig. 5.10. Velocity streamlines for Re ¼ 1000, h = 1/24.



H. Zheng et al. / Journal of Computational Physics 228 (2009) 5961–5977 5969
and the spaces Xh and Lh be equipped with the bases
Xh ¼ span
/i

h

0

 !
;

0
/i

h

� �
: i ¼ 1; � � � ;N0

( )
;

Lh ¼ span
wi

h 0
0 0

 !
;

0 wi
h

0 0

 !
;

0 0
wi

h 0

� �
;

0 0
0 wi

h

� �
: i ¼ 1; � � � ;N1

( )
;

where N0 and N1 indicate the numbers of basis of Xh and Lh, respectively.
After an appropriate linearization of the convective term by Newton iteration, one obtains a linear saddle point problem

of the following form:
A11 A12 BT
1

~GT
11

~GT
12

~GT
13

~GT
14

A21 A22 BT
2

~GT
21

~GT
22

~GT
23

~GT
24

B1 B2 0 0 0 0 0

G11 G21 0 M 0 0 0

G12 G22 0 0 M 0 0

G13 G23 0 0 0 M 0

G14 G24 0 0 0 0 M

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

�

u1
h

u2
h

ph

g11
h

g12
h

g21
h

g22
h

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼

f 1
h

f 2
h

0

0

0

0

0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: ð4:2Þ
IsoValue
-0.143522
-0.123254
-0.102987
-0.0827195
-0.0624521
-0.0421847
-0.0219173
-0.00164993
0.0186175
0.0388848
0.0591522
0.0794196
0.099687
0.119954
0.140222
0.160489
0.180757
0.201024
0.221291
0.241559
0.261826
0.282093
0.302361
0.322628
0.342896
0.363163
0.38343
0.403698
0.423965
0.444233
0.4645
0.484767
0.505035
0.525302
0.54557
0.565837
0.586104
0.606372
0.626639
0.646906
0.667174
0.687441
0.707709
0.727976
0.748243
0.768511
0.788778
0.809046
0.829313
0.84958

Fig. 5.11. Pressure level lines for Re ¼ 1000, h = 1/24.
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The matrices A11; � � � ;A22 and B1;B2 have to be assembled if (3.1) is discretized without the terms involving Gh, i.e., if all
scales are stabilized. The matrix M is the mass matrix of Lh: ðMÞij ¼ ðw

i
h;w

j
hÞ. The general entries of the matrices G11; � � � ;G24

can be computed easily using the basis of Xh and Lh. Straightforward calculations give
ðG11Þij ¼
ð/i

hÞx ð/i
hÞy

ð/i
hÞy 0

 !
;

wj
h 0

0 0

 ! !
¼ ðð/i

hÞx;w
j
hÞ;

~GT
11

� �
ij
¼ aðGT

11Þij
and all other blocks Gmn; ~GT
mn follow from the definition easily.

However, for our method (3.4) we just obtain a linear saddle point problem of the following form:
Â11 A12 BT
1

A21 Â22 BT
2

B1 B2 0

0
B@

1
CA �

u1
h

u2
h

ph

0
B@

1
CA ¼

f 1
h

f 2
h

0

0
B@

1
CA; ð4:3Þ
where
Â11 0
0 Â22

 !
¼

A11 0
0 A22

� �
þ

S11 0
0 S22

� �
IsoValue
-1
-0.1
-0.01
-0.001
-0.0001
-1e-05
-1e-06
-1e-07
-1e-08
-1e-09
0.01
0.001
0.0001
1e-05
1e-06
1e-07
1e-08
1e-09
1e-10
1e-11
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11

u streamline

Fig. 5.12. Velocity streamlines for Re ¼ 3200, h = 1/32.
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and Z Z� �

Sii ¼ a

X
Xe2sh

Xe ;k
r/i

hr/i
hdx�

Xe ;1
r/i

hr/i
hdx :
Comparing (4.3) with (4.2), we can see that: for common VMS method (3.1), we need to solve a more larger linear system
than that of our method, because our method doesn’t introduce any additional dependent variables while the common VMS
method introducing four additional dependent variables.

Besides, we also give the information on the grids and the numbers of degrees of freedom for the two methods in Table
4.1. From this table, we find that common VMS method will add more extra degrees of freedom in Lh than the standard Galer-
kin method while h decreases, and our method doesn’t add any extra degrees of freedom.

Combining all discussions above, we can derive a conclusion that our method is more efficient than common VMS method
without introducing any extra variables and degrees of freedom, but get the same stabilization effect. The numerical tests
later will also verify this conclusion.

Remark 3. While taking the numerical tests, the stabilized term in our method (3.4) will be treated explicitly, such as:
Gðujþ1
h ;vhÞ ¼ a

X
Xe2sh

Z
Xe ;k
rujþ1

h rvhdx�
Z

Xe ;1
ruj

hrvhdx
� �

8uj
h;vh 2 Xh;
where j denotes the number of Newton iteration. Meanwhile the stabilization term in (3.1) will be treated similarly.
5. Numerical results

In all experiments, the nonlinear systems are solved by Newton iteration, and algorithms are implemented using public
domain finite element software [35].
IsoValue
-0.0726048
-0.054958
-0.0373112
-0.0196644
-0.00201762
0.0156292
0.033276
0.0509228
0.0685696
0.0862164
0.103863
0.12151
0.139157
0.156804
0.17445
0.192097
0.209744
0.227391
0.245038
0.262684
0.280331
0.297978
0.315625
0.333271
0.350918
0.368565
0.386212
0.403859
0.421505
0.439152
0.456799
0.474446
0.492093
0.509739
0.527386
0.545033
0.56268
0.580327
0.597973
0.61562
0.633267
0.650914
0.668561
0.686207
0.703854
0.721501
0.739148
0.756795
0.774441
0.792088

Fig. 5.13. Pressure level lines for Re ¼ 3200, h = 1/32.
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The numerical examples are broadly divided into two parts. The first part presents the rates of convergence. The second
part deals with the problem of nonlinear steady flow. We will compare CPU time for the common VMS method and our
method to support the discussions in the former sections, and also show the stability and efficiency of our method.

5.1. Rates of convergence study

We consider X as the unit square in R2. The uniform mesh is obtained by dividing X into squares and then drawing a diag-
onal in each square in the same direction.

We choose the exact solution (u ¼ ðu1;u2Þ; p) as follows:
u1 ¼ 10x2ðx� 1Þ2yðy� 1Þð2y� 1Þ;
u2 ¼ �10xðx� 1Þð2x� 1Þy2ðy� 1Þ2;
p ¼ 10ð2x� 1Þð2y� 1Þ;
where f is determined by (2.1) with m ¼ 1:0=Re.
For the Taylor-Hood elements, using classical Galerkin method, the theory predicts a convergence rate of Oðh2Þ in the en-

ergy norm, Oðh3Þ in the L2 norm for the velocity, and Oðh2Þ for the pressure. To keep the convergence rates, we set a ¼ Oðh2Þ.
Here, we choose a ¼ 0:1 h2. Firstly, we consider the case of low Reynolds number Re ¼ 100, for which the standard Galerkin
method gets good stability. We show in Fig. 5.1 that for this case common VMS method and our method work well and keep
the convergence rates just like the theoretical analysis.

When the Reynolds number is up to 10,000, the standard Galerkin method is unstable. However, from Tables 5.1 and 5.2,
we can see that both common VMS method and our method convergence as h decreases, and both methods keep the con-
vergence rates. Also, we can see that our method doesn’t need additional iteration compared with the common VMS method.
IsoValue
-1
-0.1
-0.01
-0.001
-0.0001
-1e-05
-1e-06
-1e-07
-1e-08
-1e-09
0.01
0.001
0.0001
1e-05
1e-06
1e-07
1e-08
1e-09
1e-10
1e-11
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11

u streamline

Fig. 5.14. Velocity streamlines for Re ¼ 5000, h = 1/48.
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Besides, we also confirm the equivalence between our method and common VMS method. Concerning with the CPU time for
both methods, we find that our method is less time-consuming than common VMS method, actually, it nearly save half the
CPU time.

5.2. The driven cavity flow

A popular benchmark problem for testing numerical schemes is the’lid driven cavity’. This problem is chosen because
some benchmark data is available for comparison. In this problem, computations are carried out in the domain
X ¼ ½0;1� � ½0;1�. Flow is driven by the tangential velocity field applied to the top boundary in the absence of other body
forces. On the top side fðx;1Þ : 0 < x < 1g, the velocity is equal to u ¼ ð1;0Þ, on the rest of the boundary, zero Dirichlet con-
ditions are imposed. The computational results based on our method and common VMS method for a set of different higher
Reynolds numbers ðRe ¼ 1000;3200;5000;10;000Þ are shown in Figs. 5.2–5.9 compared with the results obtained by Ghia
et al. [34]. Here we choose a ¼ 0:1 h. In particular, we draw the x component of velocity along the vertical centerline and y
component of velocity along the horizontal centerlines. Ghia et al.s algorithm is based on the time dependent stream func-
tion using the coupled implicit and multigrid methods. The present numerical simulations are computed on a mesh
ðh ¼ 1=24;1=32;1=48;1=64Þ and they are compared to the fairly finer mesh ðh ¼ 1=129Þ of [34]. Good agreement with the
benchmark data of Ghia et al. [34] verify the two methods. Moreover, these figures show the equivalence of the two methods
computationally.

To show the effectiveness of our stabilization method based on two local Gauss integrations compared with the common
VMS method, we give the CPU time in Table 5.3 based on above tests. From this table, we can see that our method will save
more CPU time as h decreases and for more higher Reynolds number.

Besides, to show the stability of our method, we present the streamlines and the pressure contours of the cavity flows at
different Reynolds numbers in Figs. 5.10–5.17. As we know, the position of the main vortex moves towards the center of the
IsoValue
-0.0683604
-0.0499254
-0.0314904
-0.0130553
0.00537972
0.0238148
0.0422498
0.0606848
0.0791199
0.0975549
0.11599
0.134425
0.15286
0.171295
0.18973
0.208165
0.2266
0.245035
0.26347
0.281905
0.30034
0.318775
0.33721
0.355645
0.37408
0.392515
0.410951
0.429386
0.447821
0.466256
0.484691
0.503126
0.521561
0.539996
0.558431
0.576866
0.595301
0.613736
0.632171
0.650606
0.669041
0.687476
0.705911
0.724346
0.742781
0.761216
0.779651
0.798086
0.816521
0.834956

Fig. 5.15. Pressure level lines for Re ¼ 5000, h = 1/48.



cavity when the Reynolds number increases, and additional second vortex may appear in the right bottom corner of the cav-
ity and a third vortex appear at the lower left corner. When Reynolds number is up to 10,000, five resolved vortices are cap-
tured, this result fits to the result of Ghia et al. [34]. The streamlines and pressure contours agree with the results in [28].

5.3. The backward facing step flow

To show stability and efficiency of our method, we test another benchmark problem, the backward facing step problem,
which is known to possess a corner singularity.

The geometry and the boundary conditions are shown in Fig. 5.18 as in [24]. For this problem, at upper and lower com-
putational boundaries and at the inflow section, a uniform free-stream velocity boundary conditions is imposed. The Rey-
nolds number is 150, which is based on the maximum inlet velocity vx max ¼ 1 and the height of the inlet. Three different
meshes which compose of 250, 960 and 2140 triangle elements respectively are employed. Figs. 5.19, 5.20 show the vector
field and the contour plots of the pressure, respectively. Although, for the coarsest mesh, our method shows more oscillatory
around the corner. But, as h decreased, we note that the pressure contours are presented with less oscillatory. All these re-
sults agree with those of [24] and [27].

6. Conclusion

In this article, we presented and discussed a finite element algorithm for VMS method in solving the steady Navier–Stokes
equations based on two local Gauss integrations. The main feature of our method is using two local Gauss integrations to
replace the projection operator without adding any variables. And this method is equivalent to common VMS method for



IsoValue
-0.0515473
-0.0336122
-0.015677
0.00225809
0.0201932
0.0381284
0.0560635
0.0739986
0.0919338
0.109869
0.127804
0.145739
0.163674
0.181609
0.199545
0.21748
0.235415
0.25335
0.271285
0.28922
0.307155
0.325091
0.343026
0.360961
0.378896
0.396831
0.414766
0.432701
0.450637
0.468572
0.486507
0.504442
0.522377
0.540312
0.558247
0.576183
0.594118
0.612053
0.629988
0.647923
0.665858
0.683793
0.701728
0.719664
0.737599
0.755534
0.773469
0.791404
0.809339
0.827274

Fig. 5.17. Pressure level lines for Re ¼ 10;000, h = 1/64.

Fig. 5.18. Problem description of the backward facing step.

Fig. 5.19. The velocity vector fields with three different meshes. From left to right: vector filed on 250, 960 and 2140 triangle elements respectively.
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Fig. 5.20. The pressure fields with three different meshes. From left to right: pressure contours on 250, 960 and 2140 triangle elements respectively.
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the Taylor–Hood elements but saves a lot of CPU time. There are many open questions including the possible extension of the
method to time dependent problems, numerical analysis and more extensive testing.
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